Experience from start-up and operation of ANITA™ Mox plants and development of a new Hybas™ ANITA™ Mox process

Nitrogen Removal Technologies

15th May Leeds

Romain Lemaire *(Veolia Water, Paris)*
Magnus Christensson *(AnoxKaldnes)*
Bruno Bigot *(Veolia Water Solutions & Technologies UK)*
Principle – **ANITA™ Mox**

1-stage Deammonification

-60% O$_2$

-100% COD

Aerobic

- Half Nitritation

AOB

55% O$_2$ (40%)

Anoxic

NH$_4^+$

45%

Aerobic

COD (0%)

NH$_4^+$

45%

Anammox

O$_2$

COD

N$_2$ + NO$_3^-$

89%

11%

Denitrification

COD

Principle – **ANITA™ Mox**

1-stage Deammonification

-60% O$_2$

-100% COD

Aerobic

- Half Nitritation

AOB

55% O$_2$ (40%)

Anoxic

NH$_4^+$

45%

Anammox

O$_2$

COD

N$_2$ + NO$_3^-$

89%

11%

Denitrification

COD

Principle – **ANITA™ Mox**

1-stage Deammonification

-60% O$_2$

-100% COD

Aerobic

- Half Nitritation

AOB

55% O$_2$ (40%)

Anoxic

NH$_4^+$

45%

Anammox

O$_2$

COD

N$_2$ + NO$_3^-$

89%

11%

Denitrification

COD

Principle – **ANITA™ Mox**

1-stage Deammonification

-60% O$_2$

-100% COD

Aerobic

- Half Nitritation

AOB

55% O$_2$ (40%)

Anoxic

NH$_4^+$

45%

Anammox

O$_2$

COD

N$_2$ + NO$_3^-$

89%

11%

Denitrification

COD
ANITA™ Mox – MBBR process

- High sludge retention time (SRT) needed
- Necessity to protect anammox bacteria (O₂ / NO₂ → Biofilm
- Necessity to keep bacteria into the system (avoid washout)
- Maximum robustness and stability desired
ANITA™ Mox – Sjölunda WWTP, Malmö (Sweden)

4 x 50m³ = 200m³

- Sjölunda WWTP reject water
- Capacity = 200 kgN/d
- 800-1200 mgN-NH₄/L
- 1st ANITA™ Mox reference
- Flexibility for fullscale testing
ANITA™ Mox – Different Media tested

K3
500 m²/m³

K5
800 m²/m³

BiofilmChip M
1200 m²/m³

MBBR = Media + Grid ➔ No risk of losing Anammox biomass
ANITA™ Mox – BioFarm concept

→ **BioFarm concept** = Providing seeded carriers for rapid start-up of future full-scale ANITA™ Mox units
\(1.1 \text{ kgN-NH}_4/\text{m}^3.\text{d}\) in 4 months with only 3% seeding
BioFarm – Performance

- 90% NH$_4$ removal and 80% TN removal
- Patented DO control strategy reduce NO$_3$ production <11%
- 1.4 – 1.7 kWh/kgN-NH$_4$ removed
ANITA™ Mox – Sundets WWTP, Växjö (Sweden)

- 350 kgN/d → 430 kgN/d reject water
- Existing 350m³ SBR → MBBR
- K5 carrier (AnoxKaldnes)
- Quick seeding (13% from BioFarm)
- Started in January 2012

3.5m depth
Fine bubble aeration
Växjö – N-load / NH₄-rem

- Treating all reject water after only 30 days (with 13% seeding)
- 0.4-0.5 kgN/m³.d → ½ design N-load expected → Co-digestion 2013
Växjö – Performance

90% NH₄ removal and 80% TN removal
DO control strategy reduce NO₃ production <11%
Växjö – N-load vs NH$_4$-removal

$y = 0.88x$

$R^2 = 0.97$

$\Rightarrow 88\% \text{ NH}_4 \text{ removal since start-up}$
ANITA™ Mox – Holbæk (DK)

- 120 kgN/d (reject water + leachate)
- Retrofitting 600m³ existing tank
- Quick seeding (BioFarm)
- Commissioning June 2012
Holbæk – Performance

- N-removal %
- % N-NH4
- % NO3-N produced to NH4-N removed
- Temperature

DO regulation “Off”

- 80% NH₄ removal even at 15° C
- Patented DO control strategy very efficient to keep NO₃ <11%
ANITA™ Mox – Grindsted, Denmark

50,000 tons/year to BioPasteur® digester:
- 45% of DS from wastewater sludge
- 35% of DS from organic household waste
- 20% of DS from organic industrial waste

- 110 kgN/d reject from co-digester
- 140 m³ (new tank)
- Quick Seeding (BioFarm)
- Start-up May 2013
ANITA™ Mox – James River WWTP, Newport News, VA US

• 250 kgN/d reject water
• Retrofit of existing tank
• Quick seeding (BioFarm)
• Start-up Q3 2013
• Existing Hybas™ system 60,200m³/d
ANITA™ Mox – South Durham, North Carolina US

- 333 kgN/d reject water
- Retrofit of existing tank
- Quick seeding (BioFarm)
- Start-up Q1 2014
- 3 years payback
- US based BioFarm
New Development – IFAS configuration

MBBR

- Liquid
- **NH\(_4^+\)**
- **NO\(_2^-\)**
- **N\(_2\)**
- Biofilm
- Media
- Anoxic
- **Aerobic**
- **Nitritation**
- **AOB**
- **Anammox**

IFAS

- Liquid
- **NH\(_4^+\)**
- **NO\(_2^-\)**
- **N\(_2\)**
- **AOB**
- Flocs (1-3 g/L)
- **Nitritation**
- **Anoxic**
- Biofilm
- Media

AOB in biofilm = NO\(_2^-\) limitation

AOB in flocs = less NO\(_2^-\) limitation

\[O_2 = 0.5-1.5 \text{ mg/L}\]
Bench-scale trial – IFAS and MBBR

A Influent
- AD Sidestream
- $\text{NH}_4 = 900 \text{ mgN/L}$
- $\text{tCOD} = 400 \text{ mg/L}$
- $\text{BOD} = 30 \text{ mg/L}$
- $\text{tCOD/N} = 0.4$
- $\text{sbCOD/N} = 0.25$

B Conditions
- $30 \, ^\circ\text{C}$
- 43 % K5 carrier
- Volume reactor = 7 L
- $\text{D.O. IFAS} = 0.2 \, \text{mg O}_2/\text{L}$
- $\text{D.O. MBBR} = 1.0 \, \text{mg O}_2/\text{L}$
Hybas™ ANITA™ Mox – Bench-scale

Stage I
- R1: MBBR
- R2: MBBR
(150mg/L NH₄-N)

Stage II
- R1: MBBR
- R2: IFAS
(150mg/L NH₄-N)

Stage III
- R1: MBBR
- R2: IFAS
(70mg/L NH₄-N)

Stage IV
- R1: MBBR
- R2: IFAS
(30mg/L NH₄-N)

Stage V
- R1: MBBR
- R2: IFAS
(10mg/L NH₄-N)
Stage I
- R1: MBBR
- R2: MBBR
(150mg/L NH₄-N)

Stage II
- R1: MBBR
- R2: IFAS
(150mg/L NH₄-N)

Stage III
- R1: MBBR
- R2: IFAS
(70mg/L NH₄-N)

Stage IV
- R1: MBBR
- R2: IFAS
(30mg/L NH₄-N)

Stage V
- R1: MBBR
- R2: IFAS
(10mg/L NH₄-N)
Hybas™ ANITA™ Mox – Bench-scale

Stage I
R1: MBBR
R2: MBBR
(150mg/L NH₄-N)

Stage II
R1: MBBR
R2: IFAS
(150mg/L NH₄-N)

Stage III
R1: MBBR
R2: IFAS
(70mg/L NH₄-N)

Stage IV
R1: MBBR
R2: IFAS
(30mg/L NH₄-N)

Stage V
R1: MBBR
R2: IFAS
(10mg/L NH₄-N)

→ Expected IFAS design = 2-3 kgN/m³.d (x2-x3 pure MBBR)
Higher NO₂ concentrations in IFAS
Higher N-removal rates with higher NO₂ concentrations
Optimum NO₂ level depends of hydrodynamics condition
Hybas™ ANITA™Mox – Bench-scale

- **qPCR**: Evolution (Anammox, AOB, NOB and total Bacteria)

Suspended solids composition (MLSS)

1. Stable SS composition in MBBR
2. Augmentation of Biomass in IFAS
3. Higher increase of AOB in IFAS (x1000!)
Hybas™ ANITA™ Mox – Bench-scale

qPCR: Evolution (Anammox, AOB, NOB and total bacteria)

Biomass repartition IFAS vs MBBR

<table>
<thead>
<tr>
<th></th>
<th>Biofilm</th>
<th>MLSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anammox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode MBBR</td>
<td>99%</td>
<td>1%</td>
</tr>
<tr>
<td>Mode IFAS</td>
<td>96%</td>
<td>4%</td>
</tr>
</tbody>
</table>

AOB	99%	1%
Mode MBBR	99%	1%
Mode IFAS	7%	93%

Total biomass	92%	8%
Mode MBBR	92%	8%
Mode IFAS	52%	48%

x 1 000 in IFAS
Hybas™ ANITA™ Mox – IFAS configuration

Hybas™ ANITA™ Mox = Higher N-removal with combination of carriers and suspended biomass
New Development – Mainstream N-removal

- ANITA™ Mox Pilot trial on BOD-treated WW:
 - After BOD AS (Sweden)
 - After UASB (Middle East)

- 3 different systems tested:
 - Pure MBBR
 - IFAS
 - Sequenced treatment of reject water and BOD-treated WW
ANITA™ Mox – Applications (MBBR & IFAS)

- **Municipal** :
 - **Sidestreams:**
 - Anaerobic Digested Sludge centrate validated
 - Thermal Hydrolysis* + AD centrate validated
 - **Mainstream:** *(IFAS = easy retro fit)*
 - Post anaerobic (UASB) under evaluation
 - Post high-rate BOD-stage under evaluation

- **Industrial** :
 - Landfill Leachates (old) validated
 - Post anaerobic from Bio-composting (COD/N=2) validated
 - Micro-electronic / Semi-cond validated
 - Other Post anaerobic effluent (slaughterhouse, F&B) under evaluation

* *(Biothelys™, Exelys™, Cambi™)*
ANITA™ Mox – Conclusion

- **Stable and robust**

- **Low OPEX + C-footprint :**
 - - 60% O_2 / no COD dosing / 1.4-1.7 kWh/kgN_{rem} / N_2O < 0.5%

- **Efficient aeration control**
 - Continuous aeration \rightarrow no mixer / low N_2O
 - Keep NO_3 < 11% \rightarrow no NOB (MBBR & IFAS)

- **N-removal performances :**
 - MBBR = >1 kgN_{rem}/m^3.d (Sidestream)
 - IFAS = 2-3 kgN_{rem}/m^3.d (Sidestream)

- **BioFarm seeding strategy = Quicker Start-up**

- **6 references :**
 - Malmö WWTP (Sweden) \rightarrow 200 kgN/d reject water 2010
 - Växjö WWTP (Sweden) \rightarrow 430 kgN/d reject water 2012
 - Holbæk WWTP (DK) \rightarrow 120 kgN/d reject water + leachate 2012
 - Grindsted WWTP (DK) \rightarrow 110 kgN/d co-dig. sludge + food waste May 2013
 - James River WWTP (USA) \rightarrow 253 kgN/d reject water Aug 2013
 - South Durham WWTP (USA) \rightarrow 333 kgN/d reject water late 2013
THANK YOU !!