Retrofitting Veolia's DLD & Exelys to Maximise Renewable Electricity Production

Solutions & Technologies

Contents

- 1. The Study Site's Characteristics
 - 1.1 Water Process Stream
 - 1.2 Sludge Process Stream
- 2. What are the Site's Drivers for Sludge Treatment
- 3. The THP Options Considered
 - 3.1 Bio ThelysTM
 - 3.2 ExelysTM
- 4. The THP Configuration DLD or LD
- 5. The Preferred Solution and Conclusions
- 6. Questions?

The Study Site's Characteristics

1.1 Water Process Stream

- Plant Designed for 220,000 PE
- Conventional Treatment to Comply with UWWT Directive for Carbon Removal: BOD <25 mg/l (or 70% reduction) TSS <35 mg/l
- Preliminary Treatment 6 mm 2D screen and Grit removal
- Primary Treatment 3 off 37.0 m diameter PST
- Secondary Treatment
 3 Aeration Lanes (sludge age below 5 days)
 4 off 41.0 m diameter FST
- Biological Plant under loaded due to Lack of Population growth and cessation of seasonal waste stream

1.2 Sludge Process Stream

- Designed for Imports Sludge Liquids of ~600 tDS pa with separate indigenous Primary & SAS sources
- Plant Capacity 17 tDS/d or 6205 tDS pa
- Plant Comprises:-
 - Liquid Import
 - → Reception and Screening
 - Raw Sludge Buffer Tanks
 - \rightarrow 2 off 1165 m³ tanks
 - Thickening
 - → 2 off GBT units

1.2 Sludge Process Stream (cont)

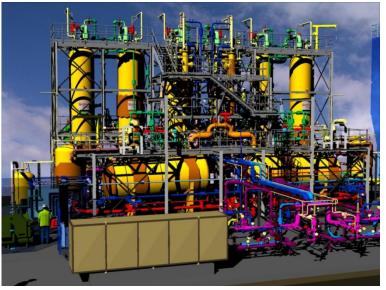
• Mesophillic Anaerobic Digesters

- → 2 off 2155 m³ (gas mixed) c/w Boiler re-circulation to external concentric tube HEX units
- Dewatering
 - → 2 off Belt Press units
- Drying Plant
 - → 1 off ~1.6 tonne/h Unit c/w pelletiser
- Biogas System
 - → Gas Holder, Boiler CHP engine and Excess Flare

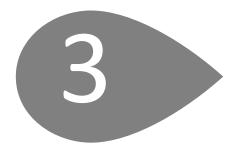
6

2

What are the Sites Drivers for Sludge Treatment


lacksquare

What are the site's drivers for sludge treatment?


- To minimise the final quantity of sludge
- Sludge disposal route is to agricultural re-use so Enhanced Treated Sludge is essential
- Currently the product is dried and gives an Enhanced Treated Sludge
- The Biogas produced by the AD plant was intended to operate the drying plant
- However, due to the revenue available from Biogas the plant has been retrofitted with a CHP facility to heat the digestion plant and generate ROC certified electricity
- Consequently the dryer is now fired with fossil fuel and Biogas used to produce electricity
- As a result the fuel OPEX costs are significant and the drying process and pelletiser has a high electrical demand

What are the site's drivers for sludge treatment? (cont)

- The operator has been reviewing the markets current driver to improve the biogas & electricity production and increase this revenue stream
- They needed to retain an Enhanced Treated product
- We were asked to review the sites current operating protocol and determine the viability of changing the sludge treatment process

• Clearly the driver was towards thermal hydrolysis

The THP Options Considered

The THP Options Considered

- Veolia has introduced Bio Thelys[™], their batch Thermal Hydrolysis process to the market with a number of references sites with capacities up to 32,700 tDS pa per treatment train
- Veolia continues to develop their sludge treatment portfolio and <u>HAVE</u> commercialised a Continuous Thermal Hydrolysis Process, Exelys[™]
- Two options have been considered:
 - Bio Thelys[™], the Veolia batch TH system with a number of reference sites
 - Exelys[™], the Veolia continuous TH system with already four installations in design or construction

Veolia THP References

City	Country	Capacity	Capacity (pe)	Start- up	Process	Configuration
Saumur	France	1 600 tDS/y	60 000	2006	Bio Thelys™	LD
Château Gontier	France	1 000 tDS/y	38 000	2006	Bio Thelys™	LD
Le Pertuiset	France	2 000 tDS/y	80 000	2007	Bio Thelys™	LD
Hillerod	Denmark	700 tDS/y	50 000	2009	Exelys™	DLD
Tergnier	France	1 600 tDS/y	30 000	2011	Bio Thelys™	LD
Monza	Italy	10 200 tDS/y	700 000	2011	Bio Thelys™	LD
Bonneuil (prototype)	France	230 tDS / y	15 000	2012	Exelys™	LD/DL/DLD
Esholt	UK	32 800 tDS/y	2 100 000	2013	Bio Thelys™	LD
Oxford	UK	24 400 tDS/y	1 400 000	2014	Bio Thelys™	LD
Lille	France	22 000 tDS/y	620 000	2014	Exelys™	DLD
Versailles	France	8 300 tDS/y	330 000	2015	Exelys™	DL
Grindsted	Denmark	1 400 tDS/y	100 000	2015	Exelys™	DLD

 \bigcirc

lacksquare

3.1 Bio Thelys™

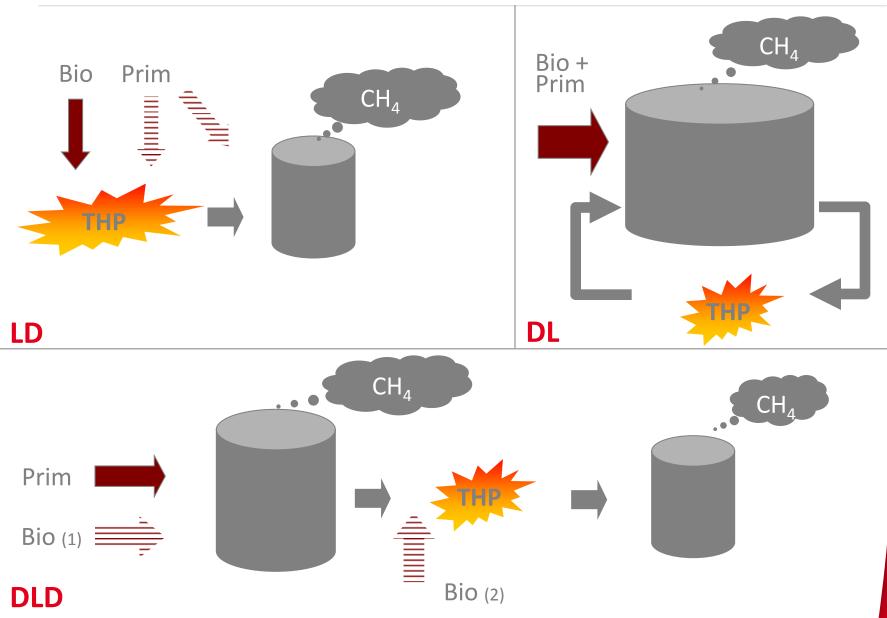
- To optimise the steam demand profile the site's capacity is considered too small to use paired reactors, instead the 3 reactor configuration is used
- This configuration gives a continuous steam demand to minimises boiler size
- Inlet Raw sludge flow circa 77.0 m³/d at 22% w/w [DLD]
- Reactors are circa 10.3 m³ each, plus buffer tank circa 20.0 m³

3.2 Exelys™

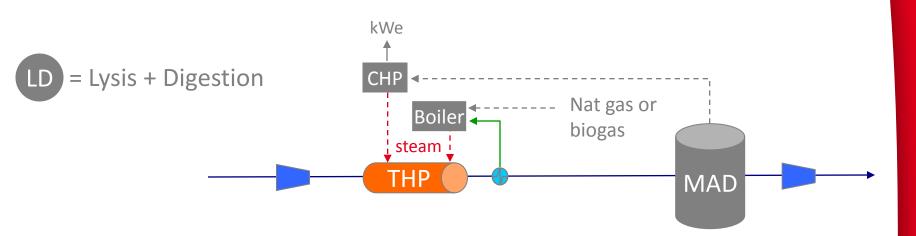
- Simplicity of solution a pipe system with small footprint
- Reactor contact zone 1.5 m³ retention which is plug flow
- Total system volume ~12.5 m³
- Energy optimisation with heat recovery from processed effluent
- Less steam usage due to more concentrated sludge feed circa 70.5 m³/d at 24% w/w [DLD]

Bio Thelys[™] or Exelys[™]?

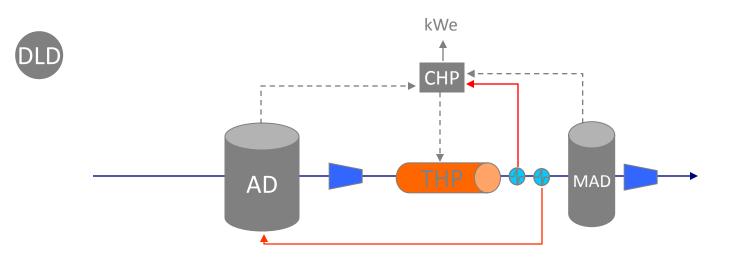
 The best Veolia TH solution is site specific, depending on capacity and client requirements


 \bigcirc

The THP Configuration LD or DLD



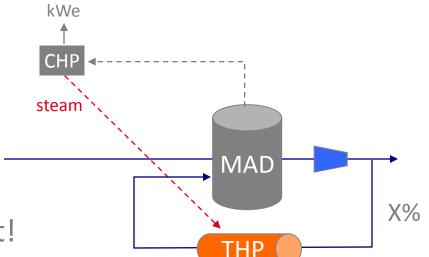
Different Thermal Hydrolysis Configurations


 \odot

Classical « LD » concept

- Thermal hydrolysis of fresh sludge
- Biogas used for steam production by CHP and boiler
- Enhanced treated sludge
- High sludge volume reduction
- Small anaerobic digester or existing capacity increase
- Well established and proven configuration

« DLD » concept (Veolia patent)



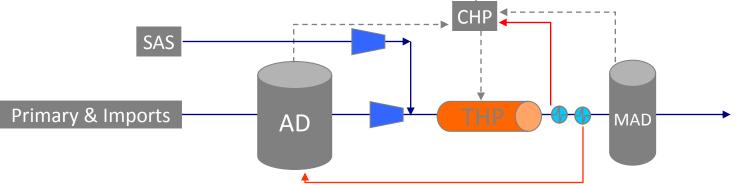
- Let biology work first!
- Providing TH to digested sludge (« refractory sludge ») thus reduces THP size & reduces steam consumption
- Increase of Biogas production
- Enhanced treated sludge

 Steam required, produced only by CHP thus electricity production optimised

« DL » concept

DL

- Let work biology first!
- « compact DLD » : Providing TH to digested sludge thus reduces THP design & reduces steam consumption
- Increase of Biogas production
- Steam is produced from the CHP, defines THP capacity
- No capacity increase and not Enhanced Treated sludge


- Large capacity Exelys[™] processing all sludge
- Increasing digester feed conc. from 7% w/w to 10% w/w increased digester retention to circa 26.5 days
- Possibility to increase imported sludge quantity/organic waste

However no opportunity foreseen

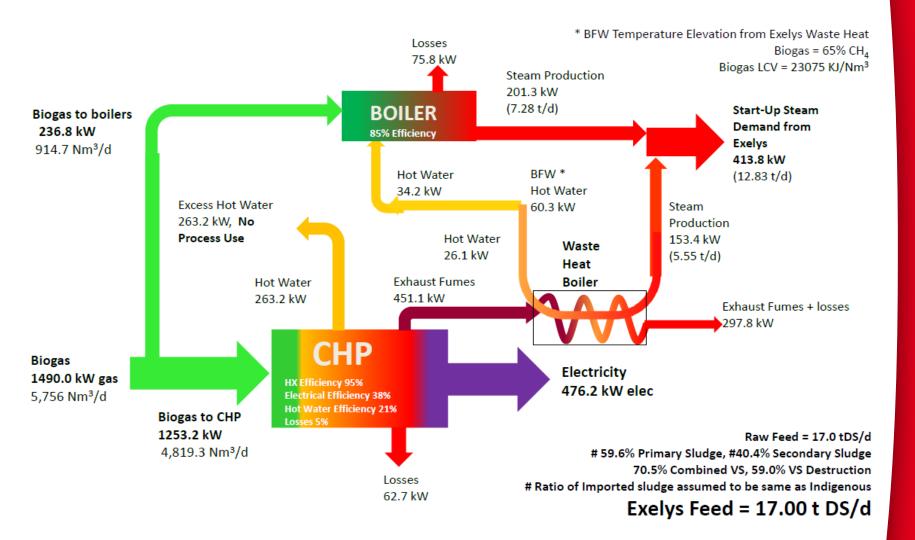
• 2 Digesters lead to exploration of DLD opportunities

In DLD Configuration

- First stage digester volume too small to ensure good digestion of all sludge
- We then examined which sludge streams are best suited for DLD treatment and which suited LD alone
- First digester feed with readily degradable sludge (Primary plus imports)
- Second digester (post Exelys[™]) processing hydrolysed SAS and digestate from first digester
- Thus Exelys[™] sized to process all indigenous SAS and the pre-digested indigenous primary and imports sludge

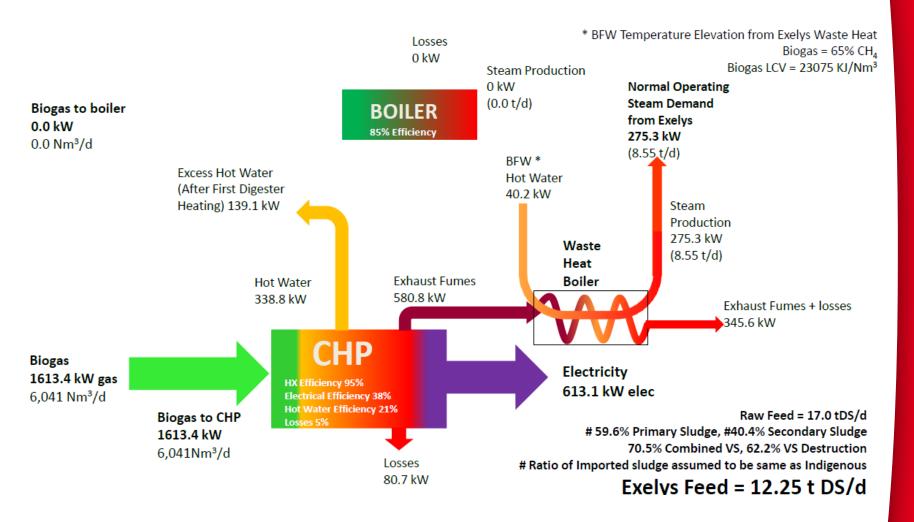
5

The preferred solution and conclusions

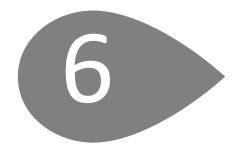


Comparison of DLD to LD

ltem	DLD	LD	Difference	
Biogas Yield, Nm ³ /d	6,041	5,756	+ DLD 5% more	
Steam Consumption, t/d	8.55	12.83	+++ DLD 33% less	
Exelys [™] Capacity, tDS/d	12.25	17.00	+++ DLD 30% less	
tonne Steam per tonne DS feed to sludge treatment	0.50	0.75	+++ DLD removing readily degradable organics	
Biogas to CHP, kW	1613.4	1253.2	++ DLD 29% more	
Biogas to Boiler, kW	zero	236.8	+++ DLD self sufficient	
Electricity Generated, kW _e	613.1	476.2	+++ DLD 29% more	
Unused Hot Water (waste heat) kW	139.1 ~65% Recovery	263.2 Zero Recovery	No use for LD, Initial digester heating DLD	


 \bigcirc

LD View


 \bigcirc

DLD View

The Preferred Solutions and Conclusions

- The chosen solution Exelys[™] in DLD configuration minimised:-
 - Plant size
 - Steam demand
 - Self sufficient no fuel purchase required (saving OPEX costs)
- The chosen solution Exelys[™] in DLD configuration maximised:-
 - Biogas production
 - Electricity generation potential
- Also the site would retain an Enhanced Treated Sludge

Any questions?

